801 research outputs found

    Contrasting prefrontal cortex contributions to episodic memory dysfunction in behavioural variant frontotemporal dementia and alzheimer's disease

    Get PDF
    Recent evidence has questioned the integrity of episodic memory in behavioural variant frontotemporal dementia (bvFTD), where recall performance is impaired to the same extent as in Alzheimer's disease (AD). While these deficits appear to be mediated by divergent patterns of brain atrophy, there is evidence to suggest that certain prefrontal regions are implicated across both patient groups. In this study we sought to further elucidate the dorsolateral (DLPFC) and ventromedial (VMPFC) prefrontal contributions to episodic memory impairment in bvFTD and AD. Performance on episodic memory tasks and neuropsychological measures typically tapping into either DLPFC or VMPFC functions was assessed in 22 bvFTD, 32 AD patients and 35 age- and education-matched controls. Behaviourally, patient groups did not differ on measures of episodic memory recall or DLPFC-mediated executive functions. BvFTD patients were significantly more impaired on measures of VMPFC-mediated executive functions. Composite measures of the recall, DLPFC and VMPFC task scores were covaried against the T1 MRI scans of all participants to identify regions of atrophy correlating with performance on these tasks. Imaging analysis showed that impaired recall performance is associated with divergent patterns of PFC atrophy in bvFTD and AD. Whereas in bvFTD, PFC atrophy covariates for recall encompassed both DLPFC and VMPFC regions, only the DLPFC was implicated in AD. Our results suggest that episodic memory deficits in bvFTD and AD are underpinned by divergent prefrontal mechanisms. Moreover, we argue that these differences are not adequately captured by existing neuropsychological measures

    Posterior cortical atrophy and Alzheimer’s disease : a meta-analytic review of neuropsychological and brain morphometry studies

    Get PDF
    This paper presents the first systematic review and meta-analysis of neuropsychological and brain morphometry studies comparing posterior cortical atrophy (PCA) to typical Alzheimer's disease (tAD). Literature searches were conducted for brain morphometry and neuropsychological studies including a PCA and a tAD group. Compared to healthy controls (HC), PCA patients exhibited significant decreases in temporal, occipital and parietal gray matter (GM) volumes, whereas tAD patients showed extensive left temporal atrophy. Compared to tAD patients, participants with PCA showed greater GM volume reduction in the right occipital gyrus extending to the posterior lobule. In addition, PCA patients showed less GM volume loss in the left parahippocampal gyrus and left hippocampus than tAD patients. PCA patients exhibit significantly greater impairment in Immediate Visuospatial Memory as well as Visuoperceptual and Visuospatial Abilities than patients with tAD. However, tAD patients showed greater impairment in Delayed Auditory/Verbal Memory than patients with PCA. PCA is characterized by significant atrophy of the occipital and parietal regions and severe impairments in visuospatial functioning.JA is funded by a doctoral grant from the Foundation for Science and Technology, FCT (SFRH/BD/64457/2009, co-funded by FSE/POPH). JA and AS are funded by project PIC/IC/83290/2007, which is supported by FEDER (POFC-COMPETE) and FCT. JMS is supported by a fellowship of the project SwitchBox-FP7-HEALTH-2010-grant 259772-2. These organizations had no role in the study design, data collection, analysis, interpretation, or in the decision to submit the paper for publication

    The definition of HIV-associated neurocognitive disorders: are we overestimating the real prevalence?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A substantial prevalence of mild neurocognitive disorders has been reported in HIV, also in patients treated with combination antiretroviral therapy (cART). This includes a new disorder that has been termed <it>asymptomatic neurocognitive impairment </it>(ANI).</p> <p>Discussion</p> <p>ANI is identified by performance on formal neuropsychological testing that is at least 1 SD below the mean of normative scores in at least two cognitive domains out of at least five examined in patients without associated symptoms or evident functional impairment in daily living. While two tests are recommended to assess each domain, only one is required to fulfill this diagnostic criterion. Unfortunately, this definition necessitates that about 20% of the cognitively normal HIV-infected population is classified as suffering ANI. This liberal definition raises important ethical concerns and has as well diagnostic and therapeutic implications. Since neither its biological substrate, prognostic significance nor therapeutic implications are clearly established, we recommend that this diagnosis be modified or applied cautiously.</p> <p>Summary</p> <p>The diagnoses of less severe forms of neurocognitive disorders in HIV relies on the outcomes of neuropsychological testing, and a high proportion of HIV-infected patients with effective cART may be classified as neurocognitively abnormal using the current criteria. The definition of ANI is not stringent, and results in approximately 20% of the population being classified as abnormal. To us this seems an unacceptable false-positive rate.</p

    Diagnosis of Alzheimer's Disease Based on Disease-Specific Autoantibody Profiles in Human Sera

    Get PDF
    After decades of Alzheimer's disease (AD) research, the development of a definitive diagnostic test for this disease has remained elusive. The discovery of blood-borne biomarkers yielding an accurate and relatively non-invasive test has been a primary goal. Using human protein microarrays to characterize the differential expression of serum autoantibodies in AD and non-demented control (NDC) groups, we identified potential diagnostic biomarkers for AD. The differential significance of each biomarker was evaluated, resulting in the selection of only 10 autoantibody biomarkers that can effectively differentiate AD sera from NDC sera with a sensitivity of 96.0% and specificity of 92.5%. AD sera were also distinguishable from sera obtained from patients with Parkinson's disease and breast cancer with accuracies of 86% and 92%, respectively. Results demonstrate that serum autoantibodies can be used effectively as highly-specific and accurate biomarkers to diagnose AD throughout the course of the disease

    Evaluation of a Previously Suggested Plasma Biomarker Panel to Identify Alzheimer's Disease

    Get PDF
    There is an urgent need for biomarkers in plasma to identify Alzheimer's disease (AD). It has previously been shown that a signature of 18 plasma proteins can identify AD during pre-dementia and dementia stages (Ray et al, Nature Medicine, 2007). We quantified the same 18 proteins in plasma from 174 controls, 142 patients with AD, and 88 patients with other dementias. Only three of these proteins (EGF, PDG-BB and MIP-1δ) differed significantly in plasma between controls and AD. The 18 proteins could classify patients with AD from controls with low diagnostic precision (area under the ROC curve was 63%). Moreover, they could not distinguish AD from other dementias. In conclusion, independent validation of results is important in explorative biomarker studies

    Interpretation of Brain Morphology in Association to Alzheimer's Disease Dementia Classification Using Graph Convolutional Networks on Triangulated Meshes

    Full text link
    We propose a mesh-based technique to aid in the classification of Alzheimer's disease dementia (ADD) using mesh representations of the cortex and subcortical structures. Deep learning methods for classification tasks that utilize structural neuroimaging often require extensive learning parameters to optimize. Frequently, these approaches for automated medical diagnosis also lack visual interpretability for areas in the brain involved in making a diagnosis. This work: (a) analyzes brain shape using surface information of the cortex and subcortical structures, (b) proposes a residual learning framework for state-of-the-art graph convolutional networks which offer a significant reduction in learnable parameters, and (c) offers visual interpretability of the network via class-specific gradient information that localizes important regions of interest in our inputs. With our proposed method leveraging the use of cortical and subcortical surface information, we outperform other machine learning methods with a 96.35% testing accuracy for the ADD vs. healthy control problem. We confirm the validity of our model by observing its performance in a 25-trial Monte Carlo cross-validation. The generated visualization maps in our study show correspondences with current knowledge regarding the structural localization of pathological changes in the brain associated to dementia of the Alzheimer's type.Comment: Accepted for the Shape in Medical Imaging (ShapeMI) workshop at MICCAI International Conference 202

    Cognitive reserve in granulin-related frontotemporal dementia: from preclinical to clinical stages

    Get PDF
    OBJECTIVE Consistent with the cognitive reserve hypothesis, higher education and occupation attainments may help persons with neurodegenerative dementias to better withstand neuropathology before developing cognitive impairment. We tested here the cognitive reserve hypothesis in patients with frontotemporal dementia (FTD), with or without pathogenetic granulin mutations (GRN+ and GRN-), and in presymptomatic GRN mutation carriers (aGRN+). METHODS Education and occupation attainments were assessed and combined to define Reserve Index (RI) in 32 FTD patients, i.e. 12 GRN+ and 20 GRN-, and in 17 aGRN+. Changes in functional connectivity were estimated by resting state fMRI, focusing on the salience network (SN), executive network (EN) and bilateral frontoparietal networks (FPNs). Cognitive status was measured by FTD-modified Clinical Dementia Rating Scale. RESULTS In FTD patients higher level of premorbid cognitive reserve was associated with reduced connectivity within the SN and the EN. EN was more involved in FTD patients without GRN mutations, while SN was more affected in GRN pathology. In aGRN+, cognitive reserve was associated with reduced SN. CONCLUSIONS This study suggests that cognitive reserve modulates functional connectivity in patients with FTD, even in monogenic disease. In GRN inherited FTD, cognitive reserve mechanisms operate even in presymptomatic to clinical stages

    Guillain-Barré syndrome: a century of progress

    Get PDF
    In 1916, Guillain, Barré and Strohl reported on two cases of acute flaccid paralysis with high cerebrospinal fluid protein levels and normal cell counts — novel findings that identified the disease we now know as Guillain–Barré syndrome (GBS). 100 years on, we have made great progress with the clinical and pathological characterization of GBS. Early clinicopathological and animal studies indicated that GBS was an immune-mediated demyelinating disorder, and that severe GBS could result in secondary axonal injury; the current treatments of plasma exchange and intravenous immunoglobulin, which were developed in the 1980s, are based on this premise. Subsequent work has, however, shown that primary axonal injury can be the underlying disease. The association of Campylobacter jejuni strains has led to confirmation that anti-ganglioside antibodies are pathogenic and that axonal GBS involves an antibody and complement-mediated disruption of nodes of Ranvier, neuromuscular junctions and other neuronal and glial membranes. Now, ongoing clinical trials of the complement inhibitor eculizumab are the first targeted immunotherapy in GBS
    corecore